Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0368420080510040248
Journal of Plant Biology
2008 Volume.51 No. 4 p.248 ~ p.254
Transformation and inheritance of Bt genes inGossypium hirsutum
Rashid Bushra

Saleem Zafar
Husnain Tayyab
Riazuddin Sheikh
Abstract
Transgenic plants offer many unique opportunities for managing pest populations. However, the inheritance, integration, and expression of multiple transgenes are prerequisite for maintaining sustainable resistance against insects in crops. We took a gene-pyramiding approach to produce Bt cotton expressing two Bt genes,cry1Ac andcry2A. Using sonication-assistedAgrobacterium-mediated transformation (SAAT), we achieved an efficiency of 6.26%. Putative transgenic plants were confirmed via PCR, Southern hybridization, and western-blotting. Those showing mortality of 75 to 100% for the second instar ofHeliothis armigera (compared with 0% for the control) were considered Bt-positive. Transgenes were segregated according to a 3:1 Mendelian inheritance pattern in the T1 generation forHeliothis resistance. In our insect bioassay, the control plants showed >95% leaf damage, and insects reached the 4th instar stage of larval growth. In contrast, leaf damage on transgenic plants was limited to only a few bites, and insect mortality was 75 to 100%. ELISA confirmed transgene expression, and Bt protein was detected in leaf tissue. This performance was consistent with that of the parent transgenics. PCR and Southern blots verified integration of thecry1Ac andcry2A genes into the progeny. Therefore, this strategy provides a pathway toward cotton improvement and the development of durable resistance against insect damage.
KEYWORD
cotton, dual Bt genes, genetic transformation, inheritance, sustainable resistance
FullTexts / Linksout information
 
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)